# RECENT (non)RESULTS OF LHC UPGRADE STUDIES

# J.A. JOHNSTONE

\_\_\_\_\_

• Local 2nd-Order Chromatic Correction of IR's



• Combined-function doublet magnets close to IP



# Local 2nd-Order Chromatic Correction with $\beta^* = 25$ cm

$$\xi_2 = -\frac{1}{8\pi} \cdot \oint K_0 \cdot \Delta \beta_1 \cdot ds - \xi_1$$

$$\Delta \beta_1(s) = \frac{\beta_0}{2\sin(2\pi v_0)} \cdot \int_s^{s+C} K_0(s') \cdot \beta_0(s') \cdot \cos[2\pi v_0 - 2|\psi_0(s') - \psi_0(s)|] \cdot ds'$$

- ξ2 largest for v0 approaching 0 or 0.5
- $\xi_2$  smallest for phase advance between IP's  $\Delta \psi = (2n+1)\pi/2$  (exact cancellation if IR optics are identical)
- The triplets are the largest source of  $\xi_2$  in the ring (huge  $\beta$ 's).
- Correcting  $\xi 2$  is equivalent to eliminating the 1st order chromatic  $\beta$ -wave. Since  $\Delta \beta 1$  advances as  $2^x$  the phase, with ~90° cells every 2nd sextupole per plane is near either the maximum or the minimum in the  $\beta$ -beat  $\Rightarrow 2$  sub-families of sextupoles per plane are sufficient (in principle) to kill  $\Delta \beta 1$ .

.,.

<sup>\*1</sup> T. Sen & Mike Syphers, "2nd Order Chromaticity of the Collider", IEEE proceedings, 1993.



Extending the sextupole families as far as 18 cells each side of the IR failed to cancel  $\Delta\beta_1$  for integrated sextupole strengths B"L less than ~8,000 T.m/m<sup>2</sup> (or thereabouts).

• CERN has an accepted <u>global</u> solution for  $\xi_2$  cancellation\*2 with  $\beta$ \* = 25 cm — it requires every sextupole in the ring (342), 4 familes per octant per beam (64 families total), and 1500 T.m/m<sup>2</sup> maximum B"L. Vertical sextupole strengths come within 2% of this maximum.



.

<sup>\*2</sup> Jean-Pierre Koutchoik, private communication, January 27, 2007, and see also the older discussion; "Second Order Chromaticity Correction of LHC at Collision", Stephane Fartoukh, LHC Project Report 308, 1999.

# COMBINED-FUNCTION DOUBLET MAGNETS CLOSE TO THE IP

#### MOTIVATION & BACKGROUND INFO

- Early separation ~1 m dipoles ('D0') in slots ~3.5 & 6.8 m from the IP have been suggested as a means to increase luminosity by decreasing the crossing angle\*3.
- Thin doublet quadrupoles ~13 m from the IP ('Q0') have been claimed to modify the  $\beta$  functions such that, for  $\beta^* = 25$  cm,  $\beta_{max}$  is no larger than for  $\beta^* = 55$  cm\*4. In this case the aperture & technology demands are diminished for upgraded triplet magnets.

• The investigation into the feasibility of using gradient magnets in the 3.5 & 6.8 m slots was an effort to combine these 2 ideas.

APD Meeting 02/07/07 4 JAJ

<sup>\*3</sup> J.P. Kartchouk & G. Serbini, "An Early Beam Separation Scheme for the LHC Luminosity Upgrade", LHC Project Report 972, 2006, and; "D0 and Its Integrability", presented at LUMI '06, Valencia, 2006.

<sup>\*4</sup> E. Laface, R. Ostojic, W. Scandale, D. Tommasin, C. Santoni, "Interaction Region with Slim Quadrupoles", EPAC proceedings, 2006; E. Laface, "Q0 with L\*=13 m", presented at LUMI '06, Valencia, 2006.

## D0 Separation Dipoles — basic concept:

• Increasing beam-beam interactions at a 'few' close parasitic crossings by decreasing the crossing angle is an acceptable trade-off to obtain large luminosity gains.









|       | $\beta^*[m]$ | Integrated field $[T \cdot m]$     | $L/L_0$    |
|-------|--------------|------------------------------------|------------|
| D0    | 0.25         | 6.1                                | 5.7        |
| at    | 0.20         | 6.8                                | 7.2        |
| 2 m   | 0.15         | 7.9                                | 9.5        |
| D0    | 0.25         | $5.9 (6.8 \text{ if } n_b = 5616)$ | 4.6 (8.6)  |
| at    | 0.20         | $6.6 (7.6 \text{ if } n_b = 5616)$ | 5.2(9.7)   |
| 9.5 m | 0.15         | $7.6 (8.7 \text{ if } n_b = 5616)$ | 5.9 (10.8) |

### Q0 Quadrupole Doublet — basic concept:

• An inner doublet allegedly alters the  $\beta$  growth curve for  $\beta^* = 25$  cm to match the  $\beta^* = 55$  cm curve (in one plane) entering the triplet.  $\beta_{max}$  in the triplet does not exceed the  $\beta^* = 55$  cm value in either plane.





| Magnet | Length                | Gradient                | Min. diameter     |
|--------|-----------------------|-------------------------|-------------------|
| SQ1    | $\sim 3 \text{ m}$    | $\sim 118~\mathrm{T/m}$ | > 32 mm           |
| SQ2    | $\sim 3.5~\mathrm{m}$ | $\sim 163~\mathrm{T/m}$ | $>35~\mathrm{mm}$ |

# A Note on Transforming the $\beta$ Growth from $\beta^*=25$ cm to the $\beta^*=55$ cm Growth Curve via 'Q0' Inner Quadrupoles<sup>†</sup>



 $\beta(S) \approx \beta_i \cdot \left(1 - \frac{\alpha_i}{\beta_i} \cdot S\right)^2$ 

<sup>†</sup> Quad locations & β functions pilfered from Emanuele Laface's "Q0 with L\*=13 m" presentation at LUMI '06, Valencia, 2006.

A thin lens of inverse focal length q1 14.5 m from the IP changes  $\alpha$  by  $\Delta\alpha = q1 \cdot \beta1$ . To change the  $\beta^* = 25$  cm curve at 14.5 m to intersect  $\beta^* = 55$  cm at 18 m  $\alpha$ 1 must be:

$$\alpha_1 \approx \frac{841.25}{3.5} \cdot \left(1 - \sqrt{\frac{589.641}{841.250}}\right) = 39.129$$

$$q_1 = \frac{\Delta \alpha_1}{\beta_1} = \frac{(39.129 + 58.000)}{841.25} = +0.11546m^{-1}$$

At 18 m  $\beta$  is now = 589.641 m, and  $\alpha_2 = \alpha_1 - \gamma_1 \cdot \Delta S = 32.755$ 

Another thin lens q2 corrects  $\alpha$  to match the  $\beta$ \* = 55 cm curve:

$$q_2 = \frac{\Delta \alpha_2}{\beta_2} = -\frac{(32.755 + 32.727)}{589.641} = -0.11105 m^{-1}$$

At 7 TeV/c  $B_0\rho = 7*3335.64$  T·m, so the integrated gradients of the 2 thin lenses are:

$$G_1L = q_1 \cdot B_0 \rho = +2695.9... T \cdot m/m$$
  
 $G_2L = q_2 \cdot B_0 \rho = -2593.1... T \cdot m/m$ 

For L = 3.5 m,  $G_{1,2} \sim 750 \text{ T/m}$ !



# **SUMMARY & COMMENTS**

- For  $\beta^* = 25$  cm, local 2nd order chromatic compensation of the IR's does not appear possible for any 'reasonable' values of sextupole strengths. (This has implications for 'dipole first' IR upgrade models since  $\beta$ max is ~2x larger in the triplets).
- The notion of a D0/Q0 combined function doublet situated close to the IP is a dead end. Far worse, the Q0 doublet proposal (which has attracted a large following in the international community) has been discovered to be complete nonsense. [This has an impact on BNL, which has eagerly anticipated building these quads!]

There *might* be some value in exploring the impact of a single, long, weak quad inboard of the triplet, but this isn't at all clear at this point....

 $\Omega$